|
|
|
|
|
|
|
микросхемы будут отпечатаны на всей подложке, едкая щелочь смоет те области, где свет воздействовал на фоторезистивное вещество, оставляя отпечатки фотошаблона (маски) конкретного слоя микросхемы и межслойные соединения (соединения между слоями), а также пути прохождения сигналов. После этого на подложку наносится другой слой полупроводника и вновь немного фоторезистивного вещества поверх него, затем используется следующий фотошаблон (маска) для создания очередного слоя микросхемы. Таким способом слои наносятся один поверх другого до тех пор, пока не будет полностью изготовлена микросхема.
Финальная маска добавляет так называемый слой металлизации, используемый для соединения всех транзисторов и других компонентов. В большинстве микросхем для этого слоя используют алюминий, но в последнее время стали использовать медь. Например, при производстве процессоров компании AMD на фабрике в Дрездене используется медь. Это объясняется лучшей проводимостью меди по сравнению с алюминием. Однако для повсеместного использования меди необходимо решить проблему ее коррозии.
Замечание
В микросхемах Pentium III и Celeron, содержащих "медный" (coppermine) кристалл (copper-mine — кодовое имя 0,18-микронного кристалла), используется алюминиевая, но никак не медная схема соединений, как может показаться из его названия. Оказывается, что название микросхемы никакого отношения к меди не имеет; она была названа в честь реки Coppermine, которая протекает в северо-западной части Канады. Компания Intel испытывает определенную симпатию к рекам (и другим геологическим структурам), расположенным в северо-западной части североамериканского континента, поэтому часто использует их в качестве кодовых имен. Например, предыдущая версия процессора Pentium III (0,25-микронный кристалл) имеет кодовое имя Katmai (одна из рек штата Аляска). Кодовые имена существующих процессоров Intel напоминают дорожные заметки путешественника на плотах: Deerfield, Foster, Northwood, Tualatin, Gallatin, McKinley и Madison — это названия рек штатов Орегон, Калифорния, Аляска, Монтана, Массачусетс и Вермонт.
|
|
|
|
|
|
Когда обработка круговой подложки завершится, на ней будет фотоспособом отпечатано максимально возможное количество микросхем. Микросхема обычно имеет форму квадрата или прямоугольника, по краям подложки остаются некоторые "свободные" участки, хотя производители стараются использовать каждый квадратный миллиметр поверхности.
Промышленность переживает очередной переходный период в производстве микросхем. В последнее время наблюдается тенденция к увеличению диаметра подложки и уменьшению общих размеров кристалла, что выражается в уменьшении габаритов отдельных схем и транзисторов и расстояния между ними. В конце 2001 и начале 2002 года произошел переход с 0,18- на 0,13-микронную технологию, вместо алюминиевых межкристальных соединений начали использовать медные, при этом диаметр подложки увеличился с 200 мм (8 дюймов) до 300 мм (12 дюймов). Увеличение диаметра подложки до 300 мм позволяет удвоить количество изготавливаемых микросхем. Использование 0,13-микронной технологии позволяет разместить на кристалле большее количество транзисторов при сохранении его приемлемых размеров и удовлетворительного процента выхода годных изделий. Это означает сохранение тенденции увеличения объемов кэш-памяти, встраиваемой в кристалл процессора. Предполагается, что к 2007 году количество транзисторов, расположенных в каждой микросхеме, достигнет 1 миллиарда.
|
|
|
|
|
|
|
|